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Received 14 August 1990 

Abstract. Non-intersecting (or vicious) random walker models in one dimension can be 
interpreted ?I models ~f dnmzin u.z!!s 1% !-e dimensions. Three p r o h ! e ~ s  p~na in ing  !n 
vicious walker models are solved. The first is the exact evaluation of the panition function 
for the random turns model of vicious walkers on a lattice. In  this model, at each tick of 
the clock, a randomly chosen walker must move one step to the left or one step to the 
right. The second problem i s  the calculation of the mean spacing between walls in terms 
of the chemical potential for a Brownian motion model of continuous domain walls in a 
strip, while the final problem solved is the calculation of the correlation between defects, 
which occur when two domain walls meet and end without crossing the whole system. 

1. Introduction 

1.1.  Domain walls 

Phenomological theories of domain walls have been successful in predictins transitions 
between striped phases and pure phases in two-dimensional anisotropic lattice systems 
(see, e.g., [I] for a review). Each domain wall is modelled as a single piecewisestraight 
line fixed at both ends of the system in one direction, with the wall progressing from 
one end of the system to the other without going backwards. Each wall has an energy 
associated with its precise shape, while the only interaction between walls is the 
condition that the walls cannot intersect. 

In the majority of the literature (e.g. [l] and references therein) such models of 
domain walls are studied via a mapping to the many body quantum mechanical problem 
of the time evolution of free fermions on a lattice. However, use of this quantum 
mechanical analogue is not necessary as has been demonstrated by Fisher [2] in his 
treatment of domain walls in terms of vicious (meaning non-intersecting) random 
walkers. This viewpoint has allowed the discovery of many new results [2]-[9]. 

Two discrete models were formulated by Fisher [Z]: the lock step model and the 
random turns model. In the continuum limit, both these models reduce to a model of 
impenetrable particles undergoing Brownian motion on a line. The precise detail of 
the discrete models was chosen so as to allow an exact evaluation of the corresponding 
partition functions, although this latter task was not carried out in full in [2]. 

1.2. Definitions of the lock step and random turns models 

In both models there are N walkers confined to a one-dimensional lattice which may 
be either infinite, semi-infinite, finite or circular. For the lock step model, at each tick 
of the clock each walker must move one step to the left or one step to the right, with 
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weightings w - ,  and w, respectively, and obey the constraint that two walkers cannot 
occupy the same site (figure I) .  For the random turns model, at each tick of the clock 
only a single randomly chosen walker moves one step to the left or one step to the 
right, with weightings w - ,  and w ,  respectively. Again there is the constraint that two 
walkers cannot occupy the same site (see figure 2).  

The partition function ZLx'(l,, . . . , /,I/;, . . . , I & )  (X denotes the particular model: 
random turns (rt) or lock step (Is)) is given by the weighted sum of all allowed paths 
from I , ,  . . ., I, to 1; , . . . , I&  in n time steps. The weighting of each configuration is 
the product of the weightings of the individual paths. For the lock step model on a 
circular lattice, the exact evaluation of the partition function can be found in [7], while 
for the same model on a semi-infinite and finite lattice the partition function is evaluated 
in [ 6 ] .  

Figure 1. A typical configuration in the lock step model 

Figure 2. A typical configuration in the random turns model. 

1.3. A i m  and summary 

In this paper three distinct problems pertaining to vicious random walkers are 
addressed. In section 2 the partition function for the lock step model on an infinite 
lattice is evaluated exactly. From the; exact expression it is shown explicitly that for a 
fixed number of walkers the large step behaviour of the partition function corresponds 
to the partition function for @pen tradle Brownian particles on a line. This proves 
that the large-time behaviour of pr babilistic quantities (e.g. probability of survival, 

Furthermore, with w- ,  = 0 and jw, ,= 1 the exact evaluation of the partition function 
gives the enumerations for a counting problem which occurs in a graphical expansion 
of the Hubbard model in the atomic limit [lo]. 

In  section 3 continuous domain walls, which are modelled by impenetrable 
Brownian particles, of finite length across an infinite strip are considered. By minimizing 
the free energy with respect to the average spacing between walls U, it is found that 
there is a critical chemical potential uc (dependent on the width f of the strip) below 
which Y is infinite. Furthermore, with 

probability of a reunion etc) i r e  th P same for both models as claimed in [2] and [3]. 

U = E t U c  (1.1) 
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it is shown that as E + Ot, U diverges according to the formula 

& I -  ( 2 v 2 / D t )  (1.2) 
where D is the diffusion constant of the Brownian particles. Thus there is a phase 
transition from a striped phase to a pure phase with an essential singularity in the 
order parameter at the transition point. 

In section 4, dislocation configurations within the Brownian motion model of 
domain walls are considered. Dislocations occur when two domain walls meet (or 
come into close proximity) and end without crossing the whole system. They model 
the configurations in the original lattice system responsible for Kosterlitz-Thouless 
type transitions (see e.g. [ l l ]  and references therein). The dislocations can be divided 
into two types according to their originating from the top or the bottom of the system. 
At large separation, the correlation p(") (x* .  t * )  where x*:= Ix,  -x21 and t* :=I t , - - f , l ,  
between two unlike dislocations at (x,, 1 , )  and (x2, t 2 )  exhibits the behaviour 

1 1 
U* ( ~ * ) ~ + ( ? r D t * / v ) ~  

p y x * ,  t * ) - -  

while the correlation p '" (x * ,  t * )  between two like dislocations behaves as 

where L is the length of the system. The result (1.3) has been derived using fermion 
methods [ 111, while the behaviour (1.4) of the correlation between like defects, although 
often quoted (see e.g. [ 111) does not seem to have been derived before. 

2. The random turns model 

2.1. A related lock step model 

It was shown in [7] that the partition function for the lock step model defined above 
could he specified as the unique solution of a multi-dimensional difference equation. 
This is again true of the lock step model. Although the difference equation approach 
provides a proof of the formula for the partition function, it is a verification of the 
formula rather than a derivation. In this subsection we will provide a derivation of 
the formula, which can then be verified using the difference equation. 

We first consider a (generalized) lock step model in which each walker can take a 
step to the left (weight w - ~ ) ,  a step to the right (weight w , )  or stay stationary (weight 
wo), With the walkers free to move on an infinite line, the partition function for a 
single walker going from site 1; to site 1, in n steps is 

Q'R'(lp*) = _  e - w l : l ~  446') dB ( 2 . 1 )  

,$(e)=(w_, e-'"+ w,+w,e'*)" (2.2) 

27r j2- 0 

where 

(see e.g. [ 2 ] ) .  Note that it is possible to locate the steps at which the walker does not 
move if we define Qr'(l;l lk) as in (2.1) but with 

+ ( e ) =  n ( ~ ~ , e " ~ + w ~ " + w , e ' ~ ) .  ( 2 . 3 )  ,=, 
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2.2. A multidimensional difference equation 

From the definition of the random turns model, it follows that the partition function 
is the unique solution of the multidimensional difference equation 

Z?2,(/[, . . . , /&I/,, . . . , I , )  
= W , [ Z ? J ( l i  ,..., l & I l - l ,  l , ,  . . ., I , )  

+Z?'!!i, . . . , .N, . l ,  I ' l l  c, 1 - 1  , L3,. I . . , .,, I \  

+ w-l[z' ,"J(r:,  . . . , /&I/ ,+ 1, I,, . . . , I,) 
+ZY)(li  ,..., l&l&,12+l,  l, ,..., I , )  
+...+ ZL"'(li ,... ) PN1l ,,..., lN-,,l,v+l)] 

+. . .+zL")(/i,. . . , I & l / l , .  . . , lN-1, I N  -111 

subject to the non-intersection condition 

Z?J( l i , .  . . , l&, . . . , l , ) = O  if I, = l, 

for any 1 s j, k s N ( j  # k ) ,  and the initial condition 

(2.10) 

(2.11) 

N 
Z?J( l [ ,  . . . , /&I/, , . . . , l , )  = n 8,i,,k. 

k = l  

To verify that (2.9) satisfies (2.10) we note that (2.9) gives 

z:Tl(/[, . . . , / & I l l , .  . . , I , )  

(2.12) 

Since 
e - ( ( l , , - l p ,  

e ~ ~ a p  det[e-I(l,-l;)ai] ) . h = I .  .... N - - det e - i ( l p * l - l p p  (2.14) 1 e-f(\2-'iJ0,2 1 j , = i  ...., !-I 
j 2 = p + l  .... N 
* = I .  ..., N 

where j ,  and j ,  label the rows and k the columns, using (2.9) we can immediately 
identify the right-hand side of (2.13) with the right-hand side of (2.10) as required. 

To verify (2.11) we simply note that if 4 = lk for any j # k then two rows of the 
~ a t r i x  in (2.9) are the same so the determinant vanishes. 

Finally, to verify the initial condition (2.12) we first specify the initial ordering 

lj < r ;  <. . .< 1;. (2.15) 

Since the walkers' paths cannot cross this means that the final positions also have the 
ordering 

I ,  < . . c IN. (2.16) 

Now (2.9) gives 
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Expanding the determinant as a sum over permutations allows the integrations in 
(2.17) to be performed to give 

where the sum is over all the permutations of 1, .  . . , N and E ( P )  denotes their parity. 
Due to the orderings (2.15) and (2.16) all terms must vanish except for the identity 
permutation. Thus (2.12) is satisfied. 

Since the difference equation, the initial condition and the boundary condition are 
satisfied by (2.9), we conclude that it is an exact formula for the partition function of 
the random turns model. 

2.3. The discrete heat equation in N dimensions 

An intrinsically interesting aspect of the difference equation (2.10) is that it can be 
transformed into a discrete version of the N-dimensional heat equation. To see this, 
simply subtract Z n ( l ; , .  . . , /&I/,, . . . , IN) from both sides of (2.10) and take 

1 
w, = w- (2.19) 

' - 2 N  

Then, as claimed, (2.10) becomes the discrete N-dimensional heat equation 

1 N  
- Z: D t Z m ( / ; , .  . ., lh / / ,  ,... , / N ) = D , , Z , , ( l ;  , ___ ,  / h [ l , , .  . . , I N )  
2,=,  

(2.20) 

where Dt denotes the difference operator 

Di,f ( I ,  ) = f ( I ,  + 1 ) +f ( I ,  - 1) - 2 f  ( !j) 

and D, denotes the difference operator 

Dngn=gn+,-gn 

(2.21) 

2.4. Large n behaviour of the partition function 

Let us suppose w, = w-, and that the number of walkers N is fixed. For large-n and 
for any periodic function f (e , ,  . . . , 8,) (period 271 in each O j ) ,  

Using this asymptotic formula in (2.9) and explicitly performing the integration over 
the 0, variables gives that for a large number n of steps, 

By writing 

I .  = x. (2.24) n / N = D t  2w,N=e-" '  and I J  
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we observe that the right-hand side of (2.23) is precisely the partition function for N 
impenetrable particles undergoing Brownian motion (see e.g. [SI, equation (2S)I ) .  The 
large-n behaviour of probabilistic quantities such as the probability of survival and 
the probability of a reunion for walkers in the random turns model is thus identical 
to the large-t behaviour of the corresponding quantities in the Brownian motion model. 
The latter can be found in [2]. 

2.5. A counting problem 

Suppose the number of walkers N is odd. Then analogous to the situation for the lock 
step model [7], it is easy to show that for a circle of M sites, the partition function is 
given by (2.9) with the replacements 

1 M-1 

271 M ',=o 
4. - Z?ir;/M and 'Io2"dB,rr- , (2.25) 

When w,  = 1, w-, = O  and M = n, the partition function counts the number of walks, 
according to the rules of the random turn model with walkers moving to the right only, 
which start at l : ,  . . . , /L and after M steps on a circular lattice of M sites finish at 

graphical expansion of the Hubbard model in the atomic limit [ l o ] .  

I ,  I t  #>,  z j , .  . . , IL, !{ in that oidei. This ~ o i i ~ i i i g  pioblein ociiiis in ii high ieinpeiatiiie 

Denoting the number of walks by C M ( l i , .  . . , l',) we have from (2.9) and (2.25) that 

where l',,, := I : .  If we denote by S, the sum of C M ( l : ,  . . . , I ; )  over all possible initial 
conditions 

1 s l :  < l ; < .  . . < r;, s M 

we observe that S, can be computed from (2.26) by dividing by N !  and summing 
each d !he !; f:o- 1 to M since !he de!errninant is. symrn-etric i:: each !;. Doing this. 
and performing a simple manipulation of the determinant gives 

(2.27) 

where denotes the Kronecker delta. 

in the sum over the r,ls can be ordered so that 
The matrix in (2.27) is symmetric in each r! and vanishes if r, = rT for j # j ' .  Thus 

l < r , < r 2 < ,  . ,< rN S M (2.28) 

provided the expression (2.27) is multiplied by N ! .  The determinant is then easily 
see!! !O be eq!!a! !O Uni!y so we have 

(2.29) )" e-2nir , , /M 
s M =  1 (??, I=,,< ... c r , , s M  

This formula agrees with that derived in [ I O ]  using Fermion methods 
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3. Continuous domain walls in a strip 

As we have previously remarked, if the lattice spacing tends to zero it is possible to 
adjust the other parameters so that the lock step and random turns model reduce to 
a model of impenetrable particles undergoing Brownian motion. This Brownian motion 
model can be interpreted as a model of continuous domain walls in a two-dimensional 
region, with time forming one of the space directions (see figure 3). 

Figure 3. The correspondence between impenetrable Brownian motion panicles and can- 
tinuous domain walls. ' l l ~ h e  time direction forthe Brownian panicles corresponds to a space 
direction far the domain walls. 

Our objective in this section is to study the thermodynamics of continuous domain 
walls in a strip, and in particular to relate the mean spacing between walls U to the 
(dimensionless) chemical potential U. This will be done by first calculating the partition 
function for a particular general value of v and then minimizing the corresponding 
free energy wiih respeci io v. 

To calculate this partition function we will take the continuum limit of the partition 
function ZF'(N,  M) calculated in [7, Eq. (2.28)] for the lock step model on a circular 
lattice of M sites with the initial and final configuration of the walkers equally spaced. 
We have 

where 
@ ( ~ ) = e - " ' c o s  6 (3.2) 

and n denotes the number of steps (assumed even), N denotes the number of walkers 
(assumed odd) and we have chosen 

(3.3) 
To take the continuum limit a factor r - N  ( r  denotes the lattice spacing) must first be 
included and the limits 

- w _  - I  -"I 

I -  1 - 2 e  . 

M + W  I + m  n+m T + O  

T M + L  r2n t Dt u 'n  + - U  
(3.4) 

taken, where L denotes the length of the system, t can be interpreted as the width and 
U is the chemical potential. (Note: we have replaced U as used in [7] by -U to allow 
identification with the chemical potential.) 

Since in the limit (3.4) 
cos"(2x( l /M+ b / v ) ) +  e~2n2("hN"DrIL'  (3.5) 
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we obtain 

N - l  m 

(3.6) 

where the superscript Bm refers to Brownian motion. Applying the Poisson summation 
formula gives 

Z','"'(N, MI-* zje"(N, L )  = "-N e Y I N  " 1 e - 2 n ~ ~ f + h N l ~ D I / L '  

I-0 b=-m 

where 

B , ( ~ ; ~ ) =  1 

Using the product expansion (3.8) in (3.7) and substituting this result in (3.6) allows 
the product in (3.6) to he performed via the identity 

m m 

(3.8) 4 m 2 e 2 m z =  n (1+q2"- 'e~i i ) ( l+q2"-~ e -21: ) ( 1 - q 2 " ) .  
"=-m " = I  

N-I n (1 - a  e2ni ' lN ) =(1  - O N ) .  
I = 0  

This procedure gives the evaluation 

(3.9) 

(3.10) 

The strip free energy J ( v )  per unit length is defined as 

! pf;(v):= - Iim - l o g z ! B " ' ( ~ ,  L )  
L-m L 

where L / N : =  v and t are held fixed. From (3.10) we have 

(3.11) 

Now the final term in (3.12) is always positive and tends to zero as v+m. Thus we 
see that if 

1 
2f U <- log(2mDt) (3.13) 

then J ( u j  is minimized by U": Let us denote the right hand side of (3.13) by wC 
and suppose U =U<+ E where E is positive and small. Expanding the logarithm to first 
order for large U then gives 

) (3.14) p ~ ( v )  -- (--Et+e-u2/D' 
1 
U 

which is minimized when 

E ~ - ( ~ Y ~ / D I )  (3.15) 

The equation (3.15) specifies the divergence of the average spacing between walls v 
as the critical chemical potential is approached. 
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4. Dislocations 

Dislocations occur when two domain walls meet (or come into close proximity) and 
end without crossing the whole system (see figure 4). The logarithm of the correlation 
between dislocations in the bulk gives their effective potential (see e.g. [ I l l ) .  In  this 
section we seek to calculate these correlations by using the Brownian motion model 
of continuous domain walls. 

4.1. Notation and definitions 

Let us denote by 

F,(x;, . . . , x k ;  x,, I,; x;, . . . , x;; t h )  (4.1) 

the partition function for N continuous domain walls with a defect originating from 
the bottom of the system. .The N- waiis start at xi , .  . . , x“  along the bottom of the 
system ( I  = 0) with the defect occurring at x = x, when f = I,. The remaining N - 2  
walls end at x;, . . . , x; when f = th (see figure 4(a)). 

Let 

H ( X h .  th ;  x;, . . . , x;; XI,. . . , x k ;  T )  (4.2) 
det..o:e the panl!iax f:xc!iax fa: N caxtk:o.;s domain -s!!s wkh a defect oigiiiatiiig 
from the top of the system. The N walls are attached at xi , .  . . , xk along the top of 
the system ( t  = T )  with the defect occurring at x = xh when f = th. The remaining N -2 
walls also end when f = f h  at  the positions x;, . . . , x; (see figure 4(b)). 

x x 

Figurc4. The two different types of defects: ( a )  originating from the bottom of the system 
and ( b )  originating from t he  top. 

Analogous to (4.1), let 

F z ( x : ,  . . . , xk; x,, t,; x,,, to; x;, . . . , x;; t h )  (4.3) 

denote the partition function for N continuous domain walls with two defects originat- 
ing from the bottom of the system. The defects occur at x = x, when t = Cl and at x = xi, 
when t =  t,,. 

Finally, as we have done previously [7], let 

G(xi,  . . . , xklx , ,  . . . , X N  ; 1’) (4.4) 

denote the partition function for N continuous domain walls which start at x i , .  . . , x k  
w h e n t = O a n d f i n i s h a t x  , , . . . ,  xN w h e n t = t ’ .  
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With this notation, the correlation p("l(x*, f*) between two unlike dislocations in 
the bulk is defined as 

p("'(x*, r*) = lim G-'(xi , .  . . , x'&, . . . , x h ;  T )  

where the limit is 

t h - f . : = f *  x,-x,:=x* and Ll  N = Y all fixed. 

We take 

xi = j L /  N j =  1,2,. . . , N (4.7) 

so that along the top and bottom of the system the walls are equally spaced. 

dehned as 

p(l)(x*, r*) = lim G-'(x;, . . . , xX,jx;, . . . , x h ;  T )  

Similarly, the correlation p"'(x*, f*) between two like dislocations in the bulk is 

X G ( % ,  , . ,, X N + ~ I X ; ,  , . ,, XL+z;  T -  fh) (4.8) 

where the limit is specified by (4.6) and the N + 2  walls along the bottom are taken 
to be equally spaced between 0 and L, and similarly the N - 2 walls along the top. 

The choice of normalization in (4.5) and (4.8) is based on matching the number 
of walls in the reference (normalizing) system with the number of walls i n  the test 
( U G L G L L ,  >ysr=:rrr, W I I F L C  111 L U G  I a L L s L  =nL'l "GICCL b""IIIJ I", n W e l l .  T\ ,sv ,  111 LXlC "Cllllll,",, 

(4.8) of pi", to obtain a finite non-zero correlation for large-f, it is necessary that the 
chemical potential of the test system differ by 0(1/ N 2 )  from that of the reference system. 

,An&---&, " ...!-..-- :.. .L̂  ne*+..- ^^^L >..c..,,* ^^..^ f" c..- - ... " 1 1  A,-- :.. tl-^ ,l"c..:.:-- 

4.2. Deferminanfformulasfor G, F,, G2 and H 

In [7, equation (4.15)j we have shown that provided N is odd and assuming periodic 
boundary conditions 

G(xL . . . , xXIxI,. . . , xN ; t )  = det[Q,(x,lx;)lj.x=l ..., (4.9) 

where 

e"' 1. (4.10) 

(Again we have replaced U used in [7] by -v to allow identification with the chemical 
potential.) 

, _ _  , ?r x-x ' ) ,L ;e -2"~" ' /L~  Qdxlx)- S( ( 
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From the definitions of G and F, we see that F, can be expressed in terms of G 
according to the formula 

FI(x{, . . . , xk ;  x., x.., t , ;  x;, . . . , xk; f h )  

= f i  I L d x r G ( x {  ,..., x',lx,,,x,.,x ,,..., x N ; f . )  
I = 3  0 

r~ Ir!' r'!.. t. - t \ (4.11) v c(r~ ,~ - \ - I , .  . . 3 - N l " 3 r . .  . 1 - N 3  ' D  .a, 

where F,  as defined here has the ends of the defect a distance Ix. -x& apart in the 
X-direction. Using (4.9) and the series form (3.8) of OJ(z; q )  and by  expanding out 
the determinant as a sum over permutations, the integrations in (4.11) can readily be 
performed to give 

F , ( x { ,  , , . , xk ;  x., x,., 1,;  x;, . . . , x k ;  f b )  =det (4.12) 

k = I .  .... N 

where the entries in the first two rows have a distinct form from the remaining rows 
and thus have been written separately. 

To calculate the correlation between defects it is first desirable to eliminate the 
finite separation in (4.11) between the ends of a single defect. However, this requires 
an infinite amount of energy and can only be done if (4.1 1) is renormalized by dividing 
through by x,,-x.. Doing this in (4.12) allows the limit xu,+x,  to be taken to give 

c I - ,  (4.G) r 1 l A 1 ,  ..., x',;&, ;a; xT ,...) 

* = I .  .... N 

Similar arguments give 

F,(xj,. , . , x',; x,, 1. ; x:, . . . , xa; t h )  =det I 1  QIh(xblxk) 

Q,(x.lx;) 
( a /  ax,) Q," (x. Ix;) 

(4.14) 

(4.15) 

4.3. Large rime behaviour of G, F ! ,  F2 and H 

To calculate the correlations (4.5) and (4.8) we only require the large time behaviours 
of G, F , ,  F2 and If. Providing we take x: ( j =  1,. . . , N )  to be given by (4.71, these 
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asymptotic forms can easily be deduced from the above determinant formulas by first 
multiplying by unity in the form of 

(4.16) 

(see e.g. [121 for a derivation of this result). For example, multiplying (4.9) by (4.16) 
gives 

G(x:,. . . ,x'&, . . . ,xk; r )  

j - N i N - l ! / 2 ~ - N I 2  d 2 n d k I N  et[e ] !=I .  .N  
k = - <  N - l ) 1 2 .  .I N-l1/2 

-AN(rb) det 

(4.17) 2. - 2 n l D , N ' / L 2  = AN(f) det[e2r'x,k/L 0,(nNxj/L+in2DtNk/L,  e l j = l  ,..., N 
k =-I  N-  I!/2. .... ( N- ,112 

- - 
2 v * U I * k ' / L i  e2n;xuk/L e 

( 2 n i k / ~ )  e2r2D~ 'k ' /L '  e21ri.rak/L 

e2nix,k/L 

(2&/L) e2nixbk/L 
e2nix,k/ L - - ,=S, ..., N 

where 
A,( f )  = ; - N ( N - I ) / Z L - N N N / ~  e~rNl e-n'UrN(N2-11/6 (4.18) 

(we have used the result ZL2:;r-,l12 k2 = N2( N - 1)/12). For large-t the theta function 
in (4.17) tends to unity and thus 

G(x;, . . . ,x'&',. . . , xk ;  r ) -AN(t)  det[e2"'x,k/Ll,=, ,.,., (4.19) 
k = - ( N ~ I ! I 2 .  ..., (N-1!/2 

,=I . . . . ,N 
h = - I N - 1 ) / 2 .  .... IN - I l12  

1 (27rikl L) e2iiirhk/L 
e2mx,h /L  

(4.20) 

(4.21) 

(4.22) 

where AN(f)  is given by (4.18) and r* by (4.6) 

4.4. The equilibrium value of v in rerms of u. 

The partition function Z!""'( N, L) for the Brownian motion model of continuous 
domain walls is given by (3.6). The form (3.6) allows the large-r behaviour to be easily 
deduced as 

(4.23) - N  e , , , N ~ ~ ~ U , ( N - , / N l l ~ " ~  Z:""( N, L) - Y 
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where the summation formula noted after (4.18) has been used. The bulk free per unit 
area energy f is thus 

where Y:= L/N, which is at a minimum when 

T2D 

2 Y 2  
v=- 

(4.24) 

(4.25) 

Thus a striped phase requires the chemical potential U to be positive and (4.25) specifies 
the mean spacing between walls in terms of U. 

4.5. Coloumb gas analogue for r * = O  

The correlations between defects have a Coulomb gas analogue if the defects are on 
the same level in the f direction so that f * = O .  To see this, we note that 

. -N(N-1)/2 det[e2wk,k/L 
1 l j - I  ..... N 

k=-IN-IlI2. .... l N ~ I I l 2  

- 2 N l N - l I l 2  - n sin7i(xi-xj)/L (4.26) 
I=,,< k r N  

which follows from the van der Monde determinant formula 

Using (4.26) and where necessary confluent variations we find from (4.19)-(4.22) 
that when f *  = 0 

N1N-11(32 FtH = I A N ( ~ ~ ) A N ( T -  fh)12 

N 

x n [sin2 ~ r ( x ~ - x ~ ) / ~ ] [ s i n ~  7i(xh -xh)/L]  
k = 3  

(4.28) 

(4.29) 

.x, )/ L. (4.30) 
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In (4.28) and (4.29) the arguments of F , H  and F,G are the same as in (4.5) and (4.8) 
respectively. We have included a formula for G2 since 

G(x:, . . . ,xhlx:, . . . , xA)= n (4.31) 

and thus (4.30) and (4.31) can be used in the definitions ofthe correlation (4.5) and (4.8). 
Using (4.28) in the numerator of (4.5) and (4.31) and (4.30) in the denominator 

(L/w)2[sin' w(xb-x.)/L]p(")(x*, 0 )  (4.32) 

is precisely the definition of the correlation between two particles of charge q at the 
points x, and xb in a one-component log-potential Coulomb gas on a line at the 
coupling r := q2/k,T = 2. As such, for large separations between the test charges, to 

x,, -x.  := x* large, 

dx,(G(xl,. . . , x h I x , , .  . . ,xN)) '  
I =  I I: 

rL.-...r rh-r  
D11"wa ,I,',. 

Innrlinn nrrlsr it -..st 0 n . a - 1  1 1  . ,2 Unnrn ,.,a h n s m  +hot i- thn I i - i ,  I 2 m qnrl CA-  CY".'.^ "."I. .& ..,U11 CYYYL ', " . ..L.,..C " V C  .10L"b L I . Y L  1.1 L . l l  11111.L L , - Y.," .". 
1 

p("'(x*, 0) -- (4.33) 
(VX*)*' 

u = g ( l + + )  (4.34) 

(in the reference system it is specified by (4.25)). Then, provided T-21, is finite, in 
the large time limit the ratio 

(4.35) 

is non-zero and finite. If L is also large we readily deduce from (4.18) that (4.35) tends 
to unity. Under these circumstances we see by substituting (4.29) in the numerator of 
(4.8) and (4.31) and (4.30) in the denominator that 

(4.36) 

is precisely the same correlations as (4.32). Thus, for large-l and large Ix,-x,I (but 
Ixb - x J L  still small) we have 

(4.37) 

4.6. The correlations for general I* 

To evaluate p ' " ' ( x * , f * )  we substitute the asymptotic formulas (4.20) and (4.22) for the 

is valid since H is real). By expanding each determinant as a sum over permutations 
the multidimensional integral in (4.5) can easily be performed due to the orthogonality 
on [0, L]  of (e2TiikiL]k~ Z. The resulting expression is a Riemann sum approximation 
to a double integral. 

:..sa A :.. / A  <! I :+ :- --.... t.- frr, t n L a  +ha rnm-10" rnni. ,nql~ n C  I A  lli ..,lr:-L 
" 1 L C ~ 1 . a L . U  11, \?.A, \,, IJ C " I ' " ~ I I I C . I L  L" ,,La. L Y n C  , I L L  c""1p1c" .."","EYLL "1 ,?.LL,, WlllL.1, 
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The denominator in (4.5) is precisely Zi""'( N, L) and is thus given asymptotically 
by (4.23). Substituting (4.25) for U in the numerator allows the limit (4.6) to be taken 
to obtain 

For I*  and x* large the integrand takes its maximum value for r = -s = f ,  -f. Using 
Laplace's method we thus find from (4.38) that 

1 1 
u2 (x*)'+ (nDt*/ U)' 

p ( " ) ( x * ,  I * ) - -  (4.39) 

which agrees with (4.33) when f * = O .  
To evaluate p i ' ) ( x * ,  I * )  we substitute the asymptotic formulas (4.21) and (4.19) for 

the integrand in (4.8), where for convenience the complex conjugate of (4.19) is used. 
As in the evaluation of p i U ' ( x * , 1 * ) ,  expanding each determinant as a sum over 
permutations allows the integrations in (4.8) to be performed. For the chemical potential 
of the test system we use (4.34) and for the denominator of (4.8) we substitute (4.23). 
If we take the ratio (4.35) as unity (which is valid for large I and L) we thus find 

p i ~ ~ ( x * ,  ( N z - l )  e--'Dr*~Lz s in2(m*/L+ i7r2Dt*N/L2). (4.40) 

For large L, x*, f *  (but x*/L, f*/L<< 1) this behaves as 

2 

27r 1 
p( ' ) (x* ,  i * ) -  (y) ;i [ ( x * ) ~ + ( ~ ~ D I * / Y ) ~ ]  (4.41) 

which, for I* = 0, agrees with (4.37) 
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